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Abstract. The growing deployment of artificial intelligence in critical
domains exposes a pressing challenge: how reliably models make pre-
dictions for ambiguous data without exhibiting overconfidence. We in-
troduce hubris benchmarking, a methodology to evaluate overconfidence
in machine learning models. The benchmark is based on a novel archi-
tecture, ambiguous generative adversarial networks (AmbiGANs), which
are trained to synthesize realistic yet ambiguous datasets. We also pro-
pose the hubris metric to quantitatively measure the extent of model
overconfidence when faced with these ambiguous images. We illustrate
the usage of the methodology by estimating the hubris of state-of-the-art
pre-trained models (ConvNext and ViT) on binarized versions of pub-
lic datasets, including MNIST, Fashion-MNIST, and Pneumonia Chest
X-ray. We found that, while ConvNext is on average 3% more accurate
than ViT, it often makes excessively confident predictions, on average
by 10% points higher than ViT. These results illustrate the usefulness of
hubris benchmarking in high-stakes decision processes.

Keywords: Synthetic Data Generation - Overconfidence - Generative
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1 Introduction

Recently, the European Union High-Level Expert Group on Artificial Intelligence
(AI) stated that trustworthy Al systems must be lawful, ethical, and robust [12].
With the growing use of machine learning and Al, responsible Al practices are
essential for transparency and accountability [5]. Model evaluation typically fo-
cuses on predictive performance metrics such as accuracy, precision, or recall.
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While high confidence in predictions is generally desirable, it is important to
recognize when models may be unreliable due to inherent data uncertainty. In
these cases, overconfident models can mislead decision-makers, posing risks in
high-stakes applications. This issue is critical in fields such as medicine, where
AT supports the medical expert in distinguishing ambiguous cases, such as a
skin lesion or lung scan shadow, that could indicate either benign or malignant
outcomes. Typical binary classification models produce output scores that are
converted into predictions. In a well-calibrated model, scores should be near 0
or 1 for clear cases, while ambiguous instances should have scores around 0.5,
reflecting an equal likelihood of belonging to either class.

Traditional Stress
rD Testing fD Testing

Original Companion

Dataset

Overconfidence
Metrics

Performance
Metrics

Fig. 1. Schematic view of how the hubris benchmarking methodology complements
model testing: on the left side, we have the traditional testing with the original dataset
and standard metrics; on the right, we have the stress testing with the companion
dataset and overconfidence metrics.

This research proposes hubris benchmarking, a method to evaluate the over-
confidence of a given classifier when facing ambiguous data. Given that ambigu-
ous data may be scarce in the training set, the first step of our method is to
generate a dataset of synthetic, ambiguous and realistic examples. Therefore,
we propose a novel generative adversarial network (GAN) framework called am-
biguous generative adversarial networks (AmbiGAN) to generate such images.
To quantify the overconfidence, we propose a new metric called hubris, which
measures the distance between the expected classifier output (ambiguity) and
the true predictions. The metric proposed here is based on Kullback—Leibler
(KL) divergence, but other similarity measures could be used as well. Hubris
ranges from 0 to 1, where 0 indicates that the model perfectly distinguishes cer-
tain cases from uncertain ones. Therefore, the higher the hubris, the higher the
model’s overconfidence.

The proposed AmbiGAN is based on generative adversarial stress test net-
works (GASTeN) [9,27] — a GAN-based framework that generates synthetic
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realistic images close to the decision boundary of a given classifier. With Ambi-
GANSs, we provide a generative framework that generates a universally ambigu-
ous dataset, referred to as companion dataset. We consider a dataset universally
ambiguous when different classifiers agree that a given data point has low confi-
dence, as opposed to situations where we stress test models on samples generated
specifically for that model [14]. This new companion dataset can test the hubris
of machine learning models. We demonstrate the utility of our approach by cre-
ating companion datasets for subsets of three image classification benchmarks:
MNIST [20], Fashion-MNIST [31], and Pneumonia Chest X-ray datasets [19].
We then evaluate two public, pre-trained models, ConvNext [22] and a Visual
Transformer (ViT) [10]. Our results show that these models are overconfident
when tested on our AmbiGAN-generated dataset, with hubris values close to
1.00. Most importantly, the results show how hubris benchmarking can provide
an alternative perspective on evaluating models: while ConvNext is generally
more accurate than ViT, it is also more overconfident, which could make it less
interesting in some scenarios (e.g., medical diagnosis). These findings demon-
strate how hubris benchmarking can be used to uncover model vulnerabilities
by exposing its overconfidence in ambiguous scenarios. By providing a structured
method to measure such vulnerabilities, this approach aids in building AT sys-
tems that are more transparent, reliable, and safer for deployment in high-stakes
fields. The contributions in this article are the following:

1. the hubris benchmarking methodology, which can be applied to any binary
image classification problem. It includes a novel hubris metric to evaluate
the overconfidence of a model in ambiguous images;

2. the AmbiGAN architecture, which generates companion ambiguous datasets
for binary classification purposes without the need for a human-in-the-loop;

3. an illustrative application of our methodology on three datasets, used to
evaluate two pre-trained models: ConvNext [22] and ViT [10];

4. publicly available companion datasets for subsets of Pneumonia Chest X-
ray*, MNIST®, and Fashion-MNIST®;

5. AmbiGAN source code available for reproducibility and future usage”’.

2 Related Work

We review generative adversarial networks, focusing on those designed for stress
testing, and discuss metrics for evaluating synthetic and ambiguous images.

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs), introduced by Goodfellow et al. [15],
model data distributions through a generator (G) and a discriminator (D) in

4 https://huggingface.co/datasets/crdsteixeira/AmbiGAN-XRay

® https://huggingface.co/datasets/crdsteixeira/ AmbiGAN-MNIST
5 https://huggingface.co/datasets/crdsteixeira/ AmbiG AN-Fashion
7 https://github.com/crdsteixeira/Hubris-AmbiGANs
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an adversarial setup. G produces synthetic samples to mimic real data, while
D distinguishes real from generated samples [28]. Both are typically multilayer
networks with convolutional and fully connected layers [8]. GANs aim for a Nash
equilibrium where G generates data indistinguishable from the true distribution.
This is formalized as a minimax optimization in Equation 1, with D maximizing
the value function V (D, G) by classifying real samples & ~ pqata and fake ones
G(z) with z ~ p,, while G minimizes it by generating complex instances for D.

gg’gN = ménmgXV(D,G) (1)

= Exr\zpdata(m) [log D(l’)] + ]Ezwpz(z) [log(l - D(G<Z)))]

Unlike models such as Boltzmann machines [1], GANs avoid Markov chains, im-
proving efficiency. Still, issues remain with diversity, image quality, and training
stability [29]. Variants such as WGAN [3], DCGAN [25], and InfoGAN [7] ad-
dress these through improved architectures, adversarial [24], task-specific [11],
and multi-objective loss functions [2].

2.2 Generative Adversarial Stress Test Networks

GASTeN [9] is a method that uses GANSs to stress test a given model by gener-
ating ambiguous yet realistic inputs. It uses a DCGAN [25] to synthesize data
near the classifier’s decision boundary in binary classification, aiming to eval-
uate the performance and reliability of a model under ambiguous conditions.
GASTeN follows a two-step training: first, pre-training a DCGAN; then, refin-
ing the generator using classifier (C') feedback through a modified loss, shown
in Equation 2. The equation includes a confusion distance term (cd), scaled by
«, to measure the distance from the prediction to the decision threshold. Aver-
age confusion distance (ACD) quantifies the confusion distance (cd) of all the
generated images.

LGN = G + o d(C(G(2))) (2)

However, GASTeN often faced trade-offs between quality (measured by the
Fréchet inception distance (FID)) and low confidence (measured by ACD) with
instability and mode collapse during training. GASTeNv2 [27] addressed these by
restoring the original DCGAN architecture, replacing earlier linear-layer modifi-
cations, and introducing a new loss. The updated loss combines GAN loss with a
Gaussian negative log likelihood (GNLL) term, shown in Equation 3. This term
guides the generator to produce samples near the decision boundary (0.5) under
the assumption of classifier calibration. The variance (0?) is treated as a hyper-
parameter, adjusting tolerance around the boundary. The updated loss improved
both training stability and the ability to generate ambiguous examples.

LgASTeNvQ _ LgAN +o- EGNLL

= LGN L q. (; log(c?) + (CG() = 0'5)2) (3)

202



Hubris Benchmarking with AmbiGANs 5

2.3 Metrics for Synthetic Images

Synthetic image evaluation commonly uses FID [17] to measure image qual-
ity and realism. FID quantifies the similarity between real and generated data
by comparing Gaussian feature statistics, capturing both realism and diver-
sity [6,17]. An alternative approach is GIQA [16], which evaluates realism using
two metrics: a quality score (QS), which measures perceptual fidelity, and a diver-
sity score (DS), which measures sample variety. A higher quality score implies
better visual quality; a higher diversity score indicates more diverse outputs.
GIQA has been applied in generative frameworks for tasks such as image edit-
ing, segmentation, and synthesis [13,26,32|, supporting more nuanced evaluation
of image generation performance.

2.4 Ambiguous Images in Classification

Machine learning models rely on high-quality data, yet real-world scenarios often
present ambiguous inputs, which are underrepresented in existing datasets [4,30].
Weiss et al. define true ambiguity as occurring when a single input yields nonzero
probabilities for multiple classes: “z is truly ambiguous if and only if P(c|z) > 0
for more than one class ¢” [30]. Unlike model-specific ambiguity, true ambiguity is
inherent to the data and independent of a classifier’s decision boundary [21,30].
This aligns with aleatoric uncertainty, which arises from intrinsic data variability
and cannot be reduced even with improved models [18,30]. In contrast, epistemic
uncertainty stems from limited model knowledge and can be reduced through
better training or data [18].

Various approaches explored the generation of ambiguous samples. GASTeN
(Section 2.2) synthesizes ambiguity based on a model’s decision boundary, link-
ing it to model-specific uncertainty. In contrast, AMBIGUESS [30] constructs
a model-agnostic dataset, ensuring that ambiguity arises from the input itself
rather than a classifier. Similarly, AmbiguousMNIST [23] extends the standard
MNIST dataset to include samples with multiple plausible labels, reflecting real-
world ambiguity.

3 Hubris Benchmarking

Ensuring that AI systems meet the standards of transparency requires tack-
ling a critical blind spot in traditional evaluation: how models handle ambigu-
ity. Figure 2 shows a case of distinguishing between the handwritten digits “8”
and “9”. These images are inherently ambiguous, even for human observers, yet
conventional empirical evaluation fails to assess how models respond to these
uncertainties.

A typical binary classification model generates output scores that are sub-
sequently converted into predictions. Ideally, these scores should be near the
extremes (e.g., close to 0 or 1) when the label is clear, while for ambiguous
cases, the scores should remain closer to 0.5, assuming proper model calibration.
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Fig. 2. Ambiguous digits (with features from 9 and 8) generated with AmbiGAN.

At the same time, some models show high certainty for these ambiguous images.
This is what is defined as model overconfidence. Without tools to measure and
mitigate overconfidence in these scenarios, Al systems risk making unwarranted,
high-certainty predictions.

3.1 Companion Datasets with Ambiguous Data

As illustrated in Figure 1, model training and evaluation typically rely on stan-
dard datasets and metrics such as accuracy, precision, or recall. However, these
metrics fail to capture model behavior in ambiguous scenarios. To address this,
we generate synthetic, ambiguous images using AmbiGANSs (see Section 4), form-
ing a companion dataset that systematically challenges the model under test.
This dataset enables the analysis of model predictions in ambiguous cases, re-
vealing overconfidence not detected by traditional metrics. To quantify this, we
introduce the hubris metric (Section 3.2), which measures the extent of over-
confidence. These tools offer a complementary evaluation framework focused on
model reliability in uncertain conditions.

3.2 Hubris Metric

We propose hubris as a metric to quantify model overconfidence in ambiguous
samples. Hubris measures the distance between a model’s prediction distribution,
7, and an ideal, unbiased reference prediction of 0.50. In binary classification, a
balanced prediction of 0.50 ideally indicates no overconfidence since, in the case
of an unbiased and calibrated model, it captures characteristics equally from
both classes. In our approach, hubris leverages KL-Divergence to measure these
distribution distances. KL-Hubris is defined in Equation 4, with § being the
prediction of the model under test. In KL-Hubris, Ref represents a Dirac distri-
bution centered around 0.50, meaning any sampled value from Ref will always
be exactly 0.50. U is a uniform distribution representing random predictions
from 0 to 1. The result is scaled from 0.00 (no overconfidence) to 1.00 (total
overconfidence), where lower KL-Hubris values indicate that the model treats
ambiguous samples with predictions close to the ideal decision boundary.

KL(§| Ref) )

KI-Hubris =1 —¢ (KL(U\Ref) (4)

We define absolute hubris (H,4) as the measure of overconfidence relative
to the ideal ambiguous output distribution centered at 0.50. Hubris can also
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measure overconfidence relative to any ambiguity estimation methodology, en-
abling comparisons of probability distributions across models. When used in this
context, we refer to it as relative hubris (Hp), which will be used in Section 6.3.

4 Ambiguous Generative Adversarial Networks

Original
Dataset

Discriminator

()

Real / Fake H LGy ]
3

Generator
©)

Ambiguity Estimators
(AE)

Fig. 3. AmbiGANs Architecture: a GAN-based architecture incorporating the ambigu-
ity estimator (AE); AE averages the individual classifier’s predictions; Generator loss
combines both original GAN loss and Gaussian loss.

We propose hubris benchmarking, which assesses the overconfidence of mod-
els in datasets that contain only ambiguous data. However, these are limited
in the standard datasets used to evaluate models in computer vision and other
learning tasks. We address this by introducing ambiguous generative adversarial
networks (AmbiGANs) to generate universally ambiguous synthetic samples.

We define Universal Ambiguity as equally challenging samples for machine
learning models, i.e., where models predict equal scores for all labels (e.g., 0.5,
assuming binary classification tasks). We approximate universal ambiguity by
leveraging diversity among classifiers. We generate a set of diverse classifiers (by
varying the architecture and training data). Samples that are ambiguous for all
those classifiers are considered universally ambiguous. Hence, we implement this
concept in AmbiGANs by integrating multiple diverse classifiers acting as the
ambiguity estimator (AE), where the mean of the individual classifier’s predic-
tions is the final output prediction of the ambiguity estimator.

Figure 3 presents a summary of the proposed architecture. We maintain the
approach of GASTeN (Section 2.2) regarding the multi-objective loss function,
which minimizes both the standard GAN loss and Gaussian loss, to guide the
generation to ambiguity. AmbiGANs balance realism and ambiguity, training the
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generator to produce realistic images that are universally ambiguous, according
to the definition above. The ambiguity estimator output prediction is necessary
to calculate the Gaussian loss of the generated images. The final loss propagated
to the generator is the sum of the original GAN loss and Gaussian loss with a
weighting factor («), shown in Equation 6.

EémbiGAN — EgAN +a- EGNLL (5)

=LEN +a- @ log(0?) + A2 (G(;OB - 05)2) (6)

5 Experimental Setup

To illustrate hubris benchmarking, we describe the AmbiGAN training process
and companion dataset generation, followed by the evaluation of two pre-trained
models. All experiments were conducted using a machine equipped with one
Tesla T4 GPU.

5.1 AmbiGAN Training

Following the standard GASTeN training strategy (Section 2.2), AmbiGAN
training is split into two stages. In the first stage, the generator and discriminator
are pre-trained over 100 epochs for stability. In the second stage, over 50 epochs,
the ambiguity estimator is introduced into the loss (Equation 6, Section 4), in-
fluencing generator updates based on its predictions. The ambiguity estimator,
frozen during the second stage, is built from 50 classifiers trained on the original
dataset. To generalize ambiguity, classifiers vary in architecture (layer counts,
feature sizes, and initializations) and are trained on non-overlapping data sub-
sets. Final outputs use sigmoid activation to approximate universal ambiguity.

AmbiGAN architectures differ by dataset: for MNIST and Fashion-MNIST,
the generator and discriminator both use 3 layers, with 512 features in their final
and initial layers, respectively, and a latent space of 256. Due to larger images, a
deeper 5-layer architecture is used for the Chest X-ray dataset, with 128 features
and a latent space dimension of 512. Learning rates follow the ones proposed
for DCGAN [25], set to 0.0002 for MNIST and Fashion-MNIST, and 0.001 for
Chest X-ray. All models use Adam optimizer (5; = 0.000, 52 = 0.999), and class
balancing is enforced via random over-sampling. We tested « values of 0.5, 1.0,
and 1.5 to control the trade-off between realism and ambiguity, and o2 values
of 0.01 and 0.1 to set tolerance around the decision boundary. A lower variance
leads to closer predictions of 0.5, while a higher one allows more variance. Three
runs were conducted for each dataset, combining all & and o2 values, yielding six
trained models per run. Hyperparameter selection relied on GASTeN metrics:
classification accuracy, FID (image realism), and ACD (ambiguity). While lower
values for both FID and ACD are ideal, FID is prioritized to ensure realism,
provided ACD remains acceptable. Ambiguity estimator accuracy and ACD are
calculated by averaging predictions across classifiers.
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5.2 Companion Datasets

We generated companion datasets for MNIST [20], Fashion-MNIST [31], and
Chest X-ray [19]. As in GASTeN, AmbiGANs are limited to binary classifica-
tion [9], so we curated binary subsets: 9 vs. 8§ in MNIST, and Dress vs. T-Shirt
in Fashion-MNIST, selecting visually ambiguous class pairs for easier inspection.
Each dataset subset includes grayscale 28x28 images, allowing for compact Am-
biGAN architectures. The Chest X-ray dataset originally consisted of 640x640
RGB images labeled as Pneumonia or Normal. We down-scaled them to 128x128
pixels to match our model constraints. Unlike the other datasets, Chest X-ray
is already binary but class-imbalanced.

Each companion dataset contains 5000 generated samples, produced in three
runs with different random seeds per dataset, totaling nine companion datasets.
We made all companion datasets publicly available on HuggingFace.

To evaluate generation quality, we used FID, quality score, and diversity
score, alongside visual inspection for realism, ambiguity, and GAN collapse. We
compared each companion dataset against a baseline generated during the initial
GAN training stage (before introducing the ambiguity estimator), which lacks
deliberate ambiguity and serves as a reference. We also compared image quality
with AmbiguousMNIST [23] (see Section 2.4) to benchmark against state-of-the-
art ambiguity generation.

5.3 Evaluated Models

We used the generated companion datasets for hubris benchmarking of two pre-
trained models, ConvNext [22] and ViT [10], originally designed for multi-class
tasks. We fine-tuned the models for binary classification by modifying the final
layer to output a single value, using a batch size of 64, a learning rate of 0.001, and
the Adam optimizer (37 = 0.9, B2 = 0.999). We first evaluated model accuracy
on the original datasets. Then, using the hubris and ACD metrics, we assessed
overconfidence on each companion dataset and on AmbiguousMNIST [23]. ACD
was computed based on the model’s output predictions.

We calculated absolute hubris (H4), which compares model outputs to an
ideal ambiguous distribution, and relative hubris (Hpg), which compares outputs
to an ambiguity estimator not used during AmbiGAN training. Hr was not
computed for AmbiguousMNIST, as its ambiguity differs in nature. While our
subsets focus on the ambiguity between specific pairs, AmbigousMNIST com-
bines features from multiple classes across the dataset. For a fair comparison,
we filtered AmbiguousMNIST to include only samples labeled with our subset.

6 Results and Discussion

Our experimental workflow consists of three phases: tuning AmbiGAN hyperpa-
rameters for each dataset, generating companion datasets, and evaluating pre-
trained models.
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6.1 AmbiGAN Training

In Table 1, we present the results with lower FID obtained during all runs for
all datasets. The weight and variance for Gaussian loss used in the best run are
also presented for each one.

Table 1. AmbiGAN results (for 2048 generated samples, averaged across 3 runs).

Dataset Loss Params ACD FID
atase ‘Weight Var
MNIST (9 vs. 8) 0.50 0.10 0.08+0.01 18.834+4.23

Fashion-MNIST (Dress vs. T-Shirt)  1.50 0.10  0.06 +£0.00 37.37+0.77
Chest X-ray (Pneumonia vs. Normal) 1.50 0.10 0.08 £0.01 20.21 +2.41

The results highlight low ACD values (< 0.08), indicating effective confusion
generation, and FID scores ranging from 18.83 to 37.37, reflecting a balance
between realism and ambiguity in the generated samples. These results demon-
strate the adaptability of AmbiGAN architecture to diverse datasets while main-
taining quality and ambiguity. ACD and FID had no significant deviation in all
runs, and we saw no GAN collapse in any of the experiments performed.

6.2 Companion Datasets

After selecting the AmbiGAN variant with optimal hyperparameters for each
dataset specified in Table 1, we generate the complete companion datasets for
each of the three original datasets. Table 2 presents the image quality evalua-
tion metrics for the companion datasets. The baseline metrics obtained during
the AmbiGAN pre-training phase (before incorporating the ambiguity estima-
tor) are also included for comparison. With this reference, we can analyze the
compromise between realism and ambiguity. We aim to keep realism but also
expect to improve ambiguity significantly.

While FID scores are higher in the companion datasets than the baseline,
quality (QS) and diversity (DS) metrics remain consistent or improve slightly.
This balance demonstrates AmbiGAN’s ability to generate visually realistic and
diverse samples while introducing ambiguity across datasets such as MNIST,
Fashion-MNIST, and Chest X-ray. The increase in FID reflects the added vari-
ability introduced by the ambiguity estimator loss factor. This fact is caused
by the introduced variability in the new samples that reside within the deci-
sion boundary of the estimator. We also note that for AmbiGAN-Fashion and
AmbiGAN-XRay, the DS decreases for the companion dataset when compared
with the baseline. On the other hand, the QS increases for these companion
datasets. This indicates that our companion ambiguous dataset has less diversity
than the original dataset. For AmbiGAN-MNIST, both QS and DS increase, pro-
viding confidence that the generated samples are realistic, which we confirmed
by manual inspection. However, in all cases, the differences are small, which
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Table 2. Baseline and companion datasets metrics (for 5,000 generated samples) in-
cluding FID, QS, and DS (Section 2.3), in comparison to the state-of-the-art dataset.

Baseline Companion
FID QS DS FID QS DS

- 74.40 0.83 0.80

Companion Dataset

Ambiguous-MNIST [23]

(9 vs. 8)
AmbiGAN-MNIST 3.19 0.82 0.78 17.67 0.83 0.79
(9 vs. 8) +0.06 £0.03 =0.03 +0.18 £0.01 +0.00
AmbiGAN-Fashion 11.77 0.74 0.83 33.96  0.80 0.79
(Dress vs. T-Shirt) +0.16 £0.01 =+0.02 +0.40 =£0.02 =0.02
AmbiGAN-XRay 17.32  0.79 0.87 18.64 0.83 0.83

(Pneumonia vs. Normal) =+0.26 =+0.02 +£0.00 +0.25 +0.01 =+£0.01

indicates that the promotion of ambiguity does not reduce the quality of the
generated data. Examples of generated images are presented in Figure 4. Espe-
cially in those of AmbiGAN-MNIST and AmbiGAN-Fashion, which are images
of common concepts, it is clear that they are realistic and ambiguous.

Fig. 4. Examples of generated companion datasets: in the left, AmbiGAN-MNIST (9
vs. 8); in the middle, AmbiGAN-Fashion (Dress vs. T-Shirt); in the right, AmbiGAN-
XRay (Pneumonia vs. Normal).

When compared to AmbiguousMNIST [23] dataset, the AmbiGAN-MNIST
companion dataset demonstrates significantly lower FID scores (17.67 vs. 74.40),
indicating improved realism in the generated samples. Additionally, the quality
(QS) and and diversity (DS) are comparable (0.83 vs 0.83 and 0.79 vs. 0.80),
suggesting that AmbiGAN maintains competitive levels of quality and diversity.
A QS value around 0.8 indicates that the generated samples retain high visual
realism, while a DS value near 0.8 reflects sufficient diversity to ensure a broad
range of variability.

6.3 Hubris of ConvNext and ViT

We applied hubris benchmarking to pre-trained ConvNext and ViT models us-
ing the AmbiGAN-generated companion datasets and AmbiguousMNIST [23].
Results are summarized in Table 3.
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Table 3. Pre-trained models evaluation with companion datasets. Accuracy of
model with the original dataset is also presented.

Model Companion Dataset Accuracy ACD Hx? HgP

Ambiguous-MNIST [23] 0.49 0.97 B
(9 vs. 8) 09.95% £0.00  £0.00
AmbiGAN-MNIST 0.48 0.97 0.91
ConvNext [22] (9 vs. 8) +0.00 £0.00 £0.00
AmbiGAN-Fash.ion 98.30% 0.48 0.96 0.95
(Dress vs. T-Shirt) +0.00 +£0.00 £0.00
AmbiGAN-XRay 95.38% 0.49 0.97 0.94
(Pneumonia vs. Normal) +0.00 +0.00 =£0.00
Ambiguous-MNIST [23] 0.41 0.92 B
9vs. 8 +0.03  +£0.02
Ambi(GAN—I\/ENIST 99.07% 0.39 0.89 0.79
. 9 vs. 8 +0.02  £0.03 £0.03
VT 10 Ambi(GAN-F;shion 033 080  0.77
(Dress vs. T-Shirt) 93.97% +0.03  £0.05 £0.06
AmbiGAN-XRay 90.63% 0.41 0.92 0.86
(Pneumonia vs. Normal) +0.00 +0.00 =£0.00

# Absolute hubris: KL-Hubris (ref = 0.50)
" Relative hubris: KL-Hubris (ref = Ambiguity estimator prediction)

Both models achieved high accuracy (> 90%), with ConvNext outperforming
ViT on MNIST (99.95%) and Chest X-ray (95.38%), confirming its superior pre-
dictive performance. However, hubris benchmarking reveals that accuracy alone
can be misleading in ambiguous scenarios. ConvNext consistently showed high
absolute hubris (H4 = 1.00) across all AmbiGAN datasets, indicating strong
overconfidence. ViT had lower H4 on simpler datasets (0.89 on AmbiGAN-
MNIST and 0.80 on AmbiGAN-Fashion) but approached ConvNext’s hubris
(0.92) on the more complex AmbiGAN-XRay. ACD values support this trend:
ConvNext had values close to 0.50, while ViT achieved lower values (close to
0.36) on simpler datasets, reflecting less confident predictions. Relative hubris
(Hg) further highlights overconfidence, particularly in ConvNext. Both models
deviated significantly from the ambiguity estimator’s more balanced outputs.
This suggests that deeper architectures such as ConvNext may amplify confi-
dence by reinforcing features across layers, leading to overconfident predictions
in ambiguous cases. AmbiguousMNIST results mirror these findings. ConvNext
reached H4 = 0.97, while ViT was slightly lower at 0.92, showing reduced over-
confidence. These results highlight the limitations of relying solely on accuracy.
While ConvNext appears superior by standard metrics, ViT’s lower hubris scores
suggest it may be more reliable in ambiguity-sensitive contexts. Companion
datasets generated by AmbiGANs provide a valuable tool for revealing these
differences.
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6.4 Limitations

We identify some limitations that may hinder the conclusions drawn from this
study. The image metrics used focus on assessing realism and quality but do not
explicitly account for ambiguity, as they do not consider cases where a single
image exhibits features from multiple realistic samples. In companion datasets,
such as AmbiGAN-XRay, human labeling could further validate the realism and
ambiguity of the generated images. Our approach to universal ambiguity as-
sumes the ambiguity estimator represents all binary classifiers, which may be
an oversimplification. Since models generalize differently, our estimator may not
fully capture all their decision boundaries.

7 Conclusions

We introduce hubris benchmarking, a methodology to evaluate model overconfi-
dence in machine learning models when faced with ambiguous data. The frame-
work provides a new metric, hubris, to quantify how confidently models make
predictions on ambiguous samples. This is relevant for applications such as med-
ical diagnosis and autonomous driving, where overconfidence can be harmful.

Since ambiguous data is rarely available, we introduce AmbiGANs to gen-
erate realistic, ambiguous companion datasets. To enable systematic overconfi-
dence evaluation, we generated companion datasets to MNIST, Fashion-MNIST,
and Chest X-ray. Then, we benchmarked ConvNext and ViT models, finding that
while ConvNext achieves 3% higher accuracy on average, it is also 10 percentage
points more overconfident than ViT.

Our results confirm that AmbiGANs effectively support hubris benchmark-
ing. The provided codebase generalizes to other datasets for binary image classi-
fication, positioning hubris benchmarking as a practical standard for evaluating
overconfidence in ambiguous settings.
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